Abstract

The chest X-ray is a widely used medical imaging technique for the diagnosis of several lung diseases. Some nodules or other pathologies present in the lungs are difficult to visualize on chest X-rays because they are obscured byoverlying boneshadows. Segmentation of bone structures and suppressing them assist medical professionals in reliable diagnosis and organ morphometry. But segmentation of bone structures is challenging due to fuzzy boundaries of organs and inconsistent shape and size of organs due to health issues, age, and gender. The existing bone segmentation methods do not report their performance on abnormal chest X-rays, where it is even more critical to segment the bones. This work presents a robust encoder–decoder network for semantic segmentation of bone structures on normal as well as abnormal chest X-rays. The novelty here lies in combining techniques from two existing networks (Deeplabv3+ and U-net) to achieve robust and superior performance. The fully connected layers of the pre-trained ResNet50 network have been replaced by an Atrous spatial pyramid pooling block for improving the quality of the embedding in the encoder module. The decoder module includes four times upsampling blocks to connect both low-level and high-level features information enabling us to retain both the edges and detail information of the objects. At each level, the up-sampled decoder features are concatenated with the encoder features at a similar level and further fine-tuned to refine the segmentation output. We construct a diverse chest X-ray dataset with ground truth binary masks of anterior ribs, posterior ribs, and clavicle bone for experimentation. The dataset includes 100 samples of chest X-rays belonging to healthy and confirmed patients of lung diseases to maintain the diversity and test the robustness of our method. We test our method using multiple standard metrics and experimental results indicate an excellent performance on both normal and abnormal chest X-rays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.