Abstract

IntroductionInherent variations between inter-center data can undermine the robustness of segmentation models when applied at a specific center (dataset shift). We investigated whether specialized center-specific models are more effective compared to generalist models based on multi-center data, and how center-specific data could enhance the performance of generalist models within a particular center using a fine-tuning transfer learning approach. For this purpose, we studied the dataset shift at center level and conducted a comparative analysis to assess the impact of data source on glioblastoma segmentation models. Methods & MaterialsThe three key components of dataset shift were studied: prior probability shift—variations in tumor size or tissue distribution among centers; covariate shift—inter-center MRI alterations; and concept shift—different criteria for tumor segmentation. BraTS 2021 dataset was used, which includes 1251 cases from 23 centers. Thereafter, 155 deep-learning models were developed and compared, including 1) generalist models trained with multi-center data, 2) specialized models using only center-specific data, and 3) fine-tuned generalist models using center-specific data. ResultsThe three key components of dataset shift were characterized. The amount of covariate shift was substantial, indicating large variations in MR imaging between different centers. Glioblastoma segmentation models tend to perform best when using data from the application center. Generalist models, trained with over 700 samples, achieved a median Dice score of 88.98%. Specialized models surpassed this with 200 cases, while fine-tuned models outperformed with 50 cases. ConclusionsThe influence of dataset shift on model performance is evident. Fine-tuned and specialized models, utilizing data from the evaluated center, outperform generalist models, which rely on data from other centers. These approaches could encourage medical centers to develop customized models for their local use, enhancing the accuracy and reliability of glioblastoma segmentation in a context where dataset shift is inevitable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.