Abstract
Convolutional neural networks have shown great promise in both general image segmentation problems as well as bioimage segmentation. In this paper, the application of different convolutional network architectures is explored on the C. elegans live/dead assay dataset from the Broad Bioimage Benchmark Collection. These architectures include a standard convolutional network which produces single pixel outputs, as well as Fully Convolutional Networks (FCN) for patch prediction. It was shown that the custom image processing pipeline, which achieved a worm segmentation accuracy of 94%, was outperformed by all of the architectures considered, with the best being 97.3% achieved by a FCN with a single downsampling layer. These results demonstrate the promise of employing convolutional neural network architectures as an alternative to ad-hoc image processing pipelines on optical microscopy images of C. elegans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.