Abstract
In the traditional CNN design, the hyperparameters, such as the size of the convolutional kernel and stride, are difficult to determine. In this paper, a new convolutional network architecture, named multi-branch fuzzy architecture network (MBFAN), was proposed for this problem. In MBFAN, some branches with a certain convolutional neural network architecture are connected in parallel. In each branch, a different-sized convolutional kernel is applied. By data training and normalization, a weight is given to each branch. By these weights, the important features in the final output are strengthened. By normalization, the branches were interconnected together, making the training process more efficient. Due to overfitting, with the increase of branches, the MBFAN accuracy increases, and then decreases. The number of branches is optimized when the MBFAN accuracy is highest. On the other hand, the location of the convolutional kernel center in an image has a great influence on the convolutional results. This is also discussed in MBFAN. For the experiments, the proposed MBFAN was adopted and tested in a simple convolutional network and a VGG16 network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Access
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.