Abstract

Energy efficiency is a critical competitive factor. Transparency of energy consumption is the key for increasing efficiency of production. For this purpose, existing energy data management systems collect data such as power, gas or water consumption on field level, save them in databases, and aggregate them in reports. However, the identification of saving potentials and the definition of efficiency measures is carried out by energy experts and thus is dependent on a person’s knowledge. The documentation of knowledge about saving potentials and measures does not take place and relations among data and knowledge of various domains are not captured. In this paper, we provide an approach that allows the holistic capture and description of data and knowledge relations. Through the use of an ontology-based meta model, consumption data can be augmented with information about time and place of capture, data type, intended purpose and permissions, as well as interfaces to other systems and relations to knowledge elements. The semantic model is to capture relevant requirements of all information demanders within the energy data management cycle. Therefore, the model is capable of detecting efficiency deficits and retrieving relevant energy efficiency measures within a knowledge base. Thus, energy consumption data can be efficiently used and knowledge about efficiency can be sustainably preserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.