Abstract
Semantic image segmentation aims to partition an image into non-overlapping regions and assign a pre-defined object class label to each region. In this paper, a semantic method combining low-level features and high-level contextual cues is proposed to segment natural scene images. The proposed method first takes the gist representation of an image as its global feature. The image is then over-segmented into many super-pixels and histogram representations of these super-pixels are used as local features. In addition, co-occurrence and spatial layout relations among object classes are exploited as contextual cues. Finally the features and cues are integrated into the inference framework based on conditional random field by defining specific potential terms and introducing weighting functions. The proposed method has been compared with state-of-the-art methods on the MSRC database, and the experimental results show its effectiveness.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have