Abstract
Conventional methods for indoor scenes classification is a challenging task due to the gaps between images׳ visual features and semantics. These methods do not consider the interactions among features or objects. In this paper, a novel approach is proposed to classify scenes by embedding semantic information in the weighted hypergraph learning. First, hypergraph regularization is improved by optimizing weights of hyperedges. Second, the connectivity among images is learned by statistics of objects appearing in the same image. In this way, semantic gap is narrowed. The experimental results demonstrate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.