Abstract

The surface relief formed by shear bands in bulk metallic glasses (BMG) under high-pressure torsion (HPT) has been investigated by the method of scanning electron microscopy (SEM) and atomic force microscopy (AFM). For this purpose, two halves of disks of the bulk metallic glass were jointed together and processed by HPT. The SEM examination of the internal surfaces of two joint halves of an HPT-processed disk allowed to study the formation and accumulation of shear bands under an increased imposed strain. The maximum density of the shear bands is observed at the edges of the HPT samples and in areas adjacent to the upper anvils. The observed minimum shear band spacing is equal to 0.5 μm after HPT processing for 5 revolutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call