Abstract
Self-welded double-wall and multi-wall carbon nanotube (DWCNT and MWCNT) bridges were used for the first time as nano-scale piezoresistors to monitor vibration and deformation of silicon cantilever beams. The CNTs were grown using low-pressure metal-catalyzed chemical vapor deposition technique between silicon-on-insulator posts situated over cantilever beams such that when the beams were deformed, CNTs were axially strained. Telescoping of inner CNT cylinders occurring under these axial strains changed the CNTs resistance. The CNT-post weld strength, as measured using atomic force microscope, was larger than 100 nN/CNT and their full-scale resistance change was larger than 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5 </sup> Ω. The effective longitudinal piezoresistivity of CNTs was larger than 4×10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-8</sup> Pa <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> which is more than 10 times larger than that of Π <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">44</sub> in silicon
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.