Abstract

The large-scale hierarchical anatase titania nanotube arrays on transparent conductive substrate are fabricated via in situ conversion from anatase titania nanowire arrays. The first-step hydrothermal reaction is the growth of ultra-long anatase titania nanowire arrays, and the second-step hydrothermal reaction is the conversion of titania nanowire arrays to titania nanotube arrays modified with a large number of nanosheets. The resultant hierarchical titania nanotube array film provides a large surface area and superior light scattering ability. Dye-sensitized solar cell based on the hierarchical titania nanotube array photoanode obtains a power conversion efficiency as high as 5.96% and shows a prominent increase compared to the pristine titania nanowire array photoanode (2.12%). In addition, the most interesting result is that an optimized efficiency of 7.54% is achieved for the cell based on the hierarchical titania nanotube array photoanode with titania sol modification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.