Abstract

Accurate medical image segmentation of brain tumors is necessary for the diagnosing, monitoring, and treating disease. In recent years, with the gradual emergence of multi-sequence magnetic resonance imaging (MRI), multi-modal MRI diagnosis has played an increasingly important role in the early diagnosis of brain tumors by providing complementary information for a given lesion. Different MRI modalities vary significantly in context, as well as in coarse and fine information. As the manual identification of brain tumors is very complicated, it usually requires the lengthy consultation of multiple experts. The automatic segmentation of brain tumors from MRI images can thus greatly reduce the workload of doctors and buy more time for treating patients. In this paper, we propose a multi-modal brain tumor segmentation framework that adopts the hybrid fusion of modality-specific features using a self-supervised learning strategy. The algorithm is based on a fully convolutional neural network. Firstly, we propose a multi-input architecture that learns independent features from multi-modal data, and can be adapted to different numbers of multi-modal inputs. Compared with single-modal multi-channel networks, our model provides a better feature extractor for segmentation tasks, which learns cross-modal information from multi-modal data. Secondly, we propose a new feature fusion scheme, named hybrid attentional fusion. This scheme enables the network to learn the hybrid representation of multiple features and capture the correlation information between them through an attention mechanism. Unlike popular methods, such as feature map concatenation, this scheme focuses on the complementarity between multi-modal data, which can significantly improve the segmentation results of specific regions. Thirdly, we propose a self-supervised learning strategy for brain tumor segmentation tasks. Our experimental results demonstrate the effectiveness of the proposed model against other state-of-the-art multi-modal medical segmentation methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.