Abstract

Deep learning-based analysis of high-frequency, high-resolution micro-ultrasound data shows great promise for prostate cancer (PCa) detection. Previous approaches to analysis of ultrasound data largely follow a supervised learning (SL) paradigm. Ground truth labels for ultrasound images used for training deep networks often include coarse annotations generated from the histopathological analysis of tissue samples obtained via biopsy. This creates inherent limitations on the availability and quality of labeled data, posing major challenges to the success of SL methods. However, unlabeled prostate ultrasound data are more abundant. In this work, we successfully apply self-supervised representation learning to micro-ultrasound data. Using ultrasound data from 1028 biopsy cores of 391 subjects obtained in two clinical centers, we demonstrate that feature representations learned with this method can be used to classify cancer from noncancer tissue, obtaining an AUROC score of 91% on an independent test set. To the best of our knowledge, this is the first successful end-to-end self-SL (SSL) approach for PCa detection using ultrasound data. Our method outperforms baseline SL approaches, generalizes well between different data centers, and scales well in performance as more unlabeled data are added, making it a promising approach for future research using large volumes of unlabeled data. Our code is publicly available at https://www.github.com/MahdiGilany/SSL_micro_ultrasound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.