Abstract

Dielectric elastomer (DE) materials, a category of electroactive polymers, can be used to design actuators that are flexible, resilient, lightweight, and durable. However, due to the uncertainties in its actuation dynamics, DE actuators always rely on feedback control to perform accurate and safe operations. In this paper, a tubular dielectric elastomer actuator (DEA) with self-sensing capability is developed. It does not require external devices to measure displacement for feedback control. The displacement of the actuator is controlled using a proportional-integral controller with the capacitance measured at high probing frequency as the self-sensing mechanism component of the actuator. By superimposing actuation and probing voltage and applying them to the DE tube, the actuation voltage activates the movement of the DE tube and the probing voltage is used for self-sensing. Fast Fourier Transform (FFT) is then used to filter a given frequency of the probing current and voltage and then calculate the capacitance from the probing current and voltage during each time window. With the relationship between capacitance and displacement of the DE tube, the displacement output is estimated online and self-sensing without an external sensor is achieved. The self-sensing signal is then used as a feedback signal in a closed-loop design to follow a reference signal for tracking. The experimental results validate the self-sensing of the DE actuator in feedback control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.