Abstract
Dielectric elastomers (DEs) are electro-active polymers that deform and change their shape when an electric field is applied across them. They are used as soft actuators since they are flexible, resilient, lightweight, and durable. Many models have been proposed to describe and capture the behavior of these actuators such as circuit representation, lumped parameter modeling, and physics-based modeling. In this paper, a hybrid between the physics and lumped parameter model is presented which is used to control the actuator. The focus of this paper is on a tubular dielectric elastomer actuator (DEA). The model proposed is validated with experimental data to evaluate its approximation to the physical actuator. The physics model offers the ability to describe how the material properties and actuator's geometry affect the dynamics and behavior of the actuator under different states. The lumped parameter model accounts for physical quantities that may not be fully expressed when formulating the physics-based equations. The discussed model performance is found to have an error less than 10% for the sinusoidal signals discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.