Abstract

This paper proposes a micro self-folding using a self-rolling up deformation. In the fabrication method at micro scale, self-folding is an especially useful method of easily fabricating complex three-dimensional (3D) structures from engineered two-dimensional (2D) sheets. However, most self-folded structures are limited to 3D structures with a hollow region. Therefore, we made 3D structures with a small hollow region by self-rolling up a 2D sheet consisting of SU-8 and a temperature-responsive hybrid hydrogel of poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAM-AAc). The temperature-responsive hydrogel can provide repetitive deformation, which is a good feature for micro soft robots or actuators, using hydrogel shrinking and swelling. Our micro self-rolling up method is a self-folding method for a 3D structure performed by rolling up a 2D flat sheet, like making a croissant, through continuous self-folding. We used our method to fabricate 3D structures with a small hollow region, such as cylindrical, conical, and croissant-like ellipsoidal structures, and 3D structures with a hollow region, such as spiral shapes. All the structures showed repetitive deformation, forward rolling up in 20 °C cold water and backward rolling up in 40 °C hot water. The results demonstrate that self-rolling up deformation can be useful in the field of micro soft devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call