Abstract
Self-powered user-interactive displays that facilitate the visualization of human information acquired by sensors are of great interest in emerging human–machine interface technology with efficient energy consumption. Herein, a self-powered motion-sensing display capable of simultaneously detecting and visualizing finger motions is presented. Our device is based on a one-dimensional photonic crystal of an interpenetrated hydrogel network block copolymer (IHN-BCP) consisting of alternating water-absorbable and non-absorbable lamellae. Triboelectrification is achieved as a function of relative humidity from 30% to 80%. The direct visualization of the humidity is also achieved through the humidity-dependent structural color of the photonic crystal in the full visible range. Furthermore, the humidity-responsive triboelectrification and structural color of our IHN-BCP photonic crystal facilitates the development of a self-powered finger motion-sensing display where diverse gestures of a finger with natural humidity are quantitatively recognized, such as vertical and sliding motion of the finger with simultaneous visualization of the motions in both contact and non-contact modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.