Abstract

The effect of the external electric field on the ground state binding energy and self‐polarization of a hydrogenic donor impurity in quantum wells (QWs) made of different materials is calculated within the effective mass approximation using a variational scheme. The variations of binding energy and self‐polarization depending on well width, electric field, and impurity position have been studied in detail. For each QW made of different materials, it has been observed that the binding energy decreases with the increase of the electric field, whereas the self‐polarization increases. Also, it has been observed that InP/In1−x Ga x P has higher binding energy values among the structures discussed. It is seen that material selection has a noticeable effect on self‐polarization and binding energy in QW‐based structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.