Abstract

We explore the mechanism of self-organized formation of regular arrays of nanostripes on vicinal surfaces by using a phase-field model. Epitaxial growth during deposition usually results in both nanostripes and islands on terraces of a vicinal substrate. Postdeposition annealing at elevated temperatures induces growth of the nanostripes but makes the islands shrink. It is a ripening process of the mixed system of the nanostripes and the islands, being dependent upon the temperature and strain. It is accompanied by a transition from the diffusion-limited regime to the detachment-limited regime induced by the strain at high temperatures. This ripening makes the islands diminish and on the other hand makes the nanostripes smoother. As a result, the islands disappear completely and the regular arrays of nanostripes are formed on the vicinal substrate. This theory can explain the self-organized formation of nanostripes and nanowires on vicinal surfaces, such as the intriguing regular arrays of Fe nanostripes on the vicinal W surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.