Abstract
Freeman's investigations on the olfactory bulb of the rabbit showed that its signal dynamics was chaotic, and that recognition of a learned stimulus is linked to a dimension reduction of the dynamics attractor. In this paper we address the question whether this behavior is specific of this particular architecture, or if it is a general property. We study the dynamics of a non-convergent recurrent model—the random recurrent neural networks. In that model a mean-field theory can be used to analyze the autonomous dynamics. We extend this approach with various observations on significant changes in the dynamical regime when sending static random stimuli. Then we propose a Hebb-like learning rule, viewed as a self-organization dynamical process inducing specific reactivity to one random stimulus. We numerically show the dynamics reduction during learning and recognition processes and analyze it in terms of dynamical repartition of local neural activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.