Abstract
This paper is a review dealing with the study of large size random recurrent neural networks. The connection weights are varying according to a probability law and it is possible to predict the network dynamics at a macroscopic scale using an averaging principle. After a first introductory section, the section 2 reviews the various models from the points of view of the single neuron dynamics and of the global network dynamics. A summary of notations is presented, which is quite helpful for the sequel. In section 3, mean-field dynamics is developed. The probability distribution characterizing global dynamics is computed. In section 4, some applications of mean-field theory to the prediction of chaotic regime for Analog Formal Random Recurrent Neural Networks (AFRRNN) are displayed. The case of AFRRNN with an homogeneous population of neurons is studied in section 4.1. Then, a two-population model is studied in section 4.2. The occurrence of a cyclo-stationary chaos is displayed using the results of [16]. In section 5, an insight of the application of mean-field theory to IF networks is given using the results of [9].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.