Abstract
Dissolved organic matter (DOM) released from biochar (BDOM) can interact with microplastics (MPs) in the environment, inevitably affecting their environmental behaviour. Information regarding the influence of BDOM on MPs during photoaging and associated variations in the MP aging mechanism remains unclear. This study evaluated the effect of BDOM on the aging of polystyrene (PS) MPs. The results showed that among three pyrolysis temperatures, low-temperature BDOM significantly enhanced the photoaging process of PS MPs, with the smallest average particle size and highest carbonyl index value after 15 days of aging under light conditions. The DOM level decreased after 5 days, increased after 5–10 days, and stabilised after 15 d. BDOM accelerates PS MPs aging, leading to more DOM released from PS, which can be transformed into 1O2 via triplet-excited state (3DOM⁎ and 3PS⁎) to further enhance PS MPs aging, resulting in the realisation of the self-accelerated aging process of PS MPs. 1O2 plays a crucial role in the self-motivated accelerated aging process of PS MPs. These findings provide new insights into the effects of the DOM structure and composition on reactive oxygen species generation during MPs aging.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have