Abstract
Terahertz frequency quantum cascade lasers (THz QCLs) are compact sources of coherent THz radiation with potential applications that include astronomy, trace-gas sensing, and security imaging. However, the reliance on slow and incoherent thermal detectors has limited their practical use in THz systems. We demonstrate THz sensing using self-mixing (SM) interferometry, in which radiation is reflected from an object back into the QCL cavity, causing changes in the laser properties; the THz QCL thus acts simultaneously as both a source and detector. Well-established SM theory predicts a much weaker coupling in THz QCLs than in diode lasers, yielding a near-linear relationship between the phase of SM signals and the external cavity length. We demonstrate velocimetry of an oscillating reflector by monitoring SM-induced changes in the QCL drive voltage. We show that this yields data equivalent to that obtained by sensing the emitted THz power, thus allowing phase-sensitive THz-SM sensing without any external detector. We also demonstrate high-resolution SM-imaging at a round-trip distance of 21 m in air—the longest-range interferometric sensing with a THz QCL to date.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have