Abstract

We report on the numerical investigation of the interaction between two solitons in a doped nonlinear dispersive medium. The dopant is modeled as a two-level atomic system coherently driven to support simultaneous nonlinear Schrödinger equation and self-induced transparency solitons. We investigate the influence of the self-Induced transparency in the case where the two-solitons are in phase. It is found that the periodical soliton collision effect disappears due to the presence of the atomic system. This new phenomenon is understood considering the detuning parameter on the atomic system description. This result can be exploited in multiple pulse propagation where the soliton interactions play an important role.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call