Abstract

Self-diffusion coefficients of linear and cyclic alkanes in melt, in blends with equivalent linear alkanes, and dissolved in linear polyethylene, were measured by pulsed-gradient spin-echo nuclear magnetic resonance at various temperatures. The results indicate the following: (i) at the same carbon number, cyclic alkanes diffuse more slowly than linear alkanes in their respective melts, but linears and cyclics share a similar rapid rate of decrease with increasing carbon number; (ii) in blends of linear and cyclic alkanes at the same carbon number the single average diffusion coefficient observed varies monotonically as a function of composition; and (iii) two distinct diffusion coefficients are observed in the cycloalkane/linear polyethylene blends, with the extrapolated trace cycloalkane diffusion consistent with Rouse behavior. The results are compared with recent numerical simulations and with experiments in other polymer systems, forming a consistent picture of the effects of diffusant mass, molecular shape and flexibility, and the dynamic attributes of the host material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.