Abstract

Complementing ultrafast thulium-doped fiber-laser systems with a subsequent nonlinear pulse compression stage can enable unique laser parameters at around 2 μm operation wavelength. Significant pulse shortening and peak power enhancement have been accomplished using a fused silica solid-core fiber. In this fiber a pulse peak power of 24 MW was achieved without catastrophic damage due to self-focusing. As compared to operation in the well-explored 1 μm wavelength region, increasing the emission wavelength to 2 μm has a twofold advantage for nonlinear compression in fused-silica solid-core fibers. This is because, on the one hand the self-focusing limit scales quadratically with the wavelength. On the other hand the dispersion properties of fused silica allow for self-compression of ultrashort pulses beyond 1.3 μm wavelength, which leads to strong spectral broadening from very compact setups without the need for external compression. Using this technique we have generated 1.1 μJpulses with 24 fs FWHM pulse duration (<4 optical cycles), 24 MW peak power and 24.6 W of average power. To the best of our knowledge, this is the highest average power obtained from any nonlinear compression experiment around 2 μm wavelength and the first demonstration of peak powers beyond 20 MW within a fused-silica solid-core fiber. This result emphasizes that thulium-doped fiber-based chirped-pulse amplification systems may outperform their ytterbiumdoped counterparts in terms of peak power due to the fourfold increase of the critical power of self-focusing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.