Abstract
Thulium-doped fiber lasers are an attractive concept for the generation of mid-infrared (mid-IR) ultrashort pulses around 2 μm wavelength with an unprecedented average power. To date, these systems deliver >150 W of average power and GW-class pulse peak powers with output pulse durations of a few hundreds of fs. As some applications can greatly benefit from even shorter pulse durations, the spectral broadening and subsequent temporal pulse compression can be a key enabling technology for high average power few-cycle laser sources around 2 μm wavelength. In this contribution we demonstrate the nonlinear compression of ultrashort pulses from a high repetition rate Tm-doped fiber laser using a nitrogen gas-filled hollow capillary. Pulses with 4 GW peak power, 46 fs FWHM duration at an average power of 15.4 W have been achieved. This is, to the best of our knowledge, the first 2 μm laser delivering intense, GW-pulses with sub 50-fs pulse duration and an average power of >10 W. Based on this result, we discuss the next steps towards a 100 W-level, GW-class few-cycle mid-IR laser.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.