Abstract

Recombinant vectors based on adeno-associated virus type 2 (AAV) target the liver efficiently, but the transgene expression is limited to ∼5% of hepatocytes. The lack of efficient transduction is due, in part, to the presence of a cellular protein, FKBP52, phosphorylated forms of which inhibit the viral second-strand DNA synthesis. We have documented that dephosphorylation of FKBP52 at tyrosine residues by the cellular T cell protein tyrosine phosphatase (TC-PTP) enhances AAV-mediated transduction in primary murine hematopoietic cells from TC-PTP-transgenic mice. We have also documented that AAV-mediated transduction is significantly enhanced in hepatocytes in TC-PTP-transgenic as well as in FKBP52-deficient mice because of efficient viral second-strand DNA synthesis. In this study, we evaluated whether co-infection of conventional single-stranded AAV vectors with self-complementary AAV-TC-PTP vectors leads to increased transduction efficiency of conventional AAV vectors in established human cell lines in vitro and in primary murine hepatocytes in vivo. We demonstrate here that scAAV-TC-PTP vectors serve as a helper virus in augmenting the transduction efficiency of conventional AAV vectors in vitro as well as in vivo which correlates directly with the extent of second-strand DNA synthesis of conventional single-stranded AAV vectors. Toxicological studies following tail-vein injections of scAAV-TC-PTP vectors in experimental mice show no evidence of any adverse effect in any of the organs in any of the mice for up to 13 weeks. Thus, this novel co-infection strategy should be useful in circumventing one of the major obstacles in the optimal use of recombinant AAV vectors in human gene therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.