Abstract

We present experimental data for artificial metaconductors exhibiting skin effect suppression at microwave frequencies. The metaconductor consists of a stack comprising twelve periods of alternating ferromagnetic (Permalloy) and normal metal (Cu) layers. Near the effective antiferromagnetic resonant frequency the average in-plane magnetic permeability of the stack approaches zero, leading to an increase in the skin depth. Compared to a Cu-based device, up to 70% loss reduction has been achieved by a metaconductor based coplanar wave guide at ~ 10 GHz without changing the propagation wavelength. Moreover, unlike conventional magnetic devices, no external magnetic bias is required due to the large magnetic anisotropy present in the ferromagnetic layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call