Abstract
Self-assembly of AB diblock copolymers confined in cylindrical nanopores is studied using a simulated annealing technique. The pore diameter and surface preference are systematically varied to examine their effects on the self-assembled morphologies and the chain conformations. For bulk lamella-forming and cylinder-forming diblock copolymers, novel structures such as helices and concentric (perforated) lamellae spontaneously form when the copolymers are confined in cylindrical pores. The observed equilibrium morphologies are compared with that obtained from experiments, theory, and other simulations. A simple model is proposed for symmetric diblock copolymers, which gives a reasonable description of the layer thickness for the concentric lamellae. It is found that chains near the pore surfaces are compressed relative to the bulk chains, which can be attributed to the existence of the surfaces. The dependence of the chain conformation on the degree of confinement and strength of the surface preference are reasonably explained. The energetics is discussed qualitatively and used to account for the appearance of the complex phase behavior observed for certain intermediate conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.