Abstract

Self-assembled organic thin films of dodecanethiol (DT), mercaptobenzothiazole (MBT), benzotriazole (BTA), imidazole (IMD) and benzothiazole (BT) are formed by adsorption on the surface of copper thin film used in ultralarge-scale integrated circuits. The films are characterized by x-ray photoelectron spectroscopy. The inhibition of corrosion of these organic thin films is investigated in aerated 0.5 M H2SO4 solutions by electrochemical impedance spectroscopy and potentiodynamic polarization techniques. The presence of these films reduced corrosion by blocking the copper surface from the oxygen dissolved in the acid medium. The relative inhibition efficiencies of these inhibiting agents in preventing copper oxidation are found to be in the order of DT>MBT>BT>BTA>IMD. The effectiveness of the inhibitors increased with the temperature, concentration of the inhibitors, and duration of immersion in the solution. An adsorption model is proposed on the basis of variation of the impedance according to the inhibitor concentration. The stability and packing of the inhibitors on the surface appear to be the most important factors in determining the inhibitive efficiency of the inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.