Abstract
Significance: Chronic wounds are one of the major burdens of the U.S. health care system with an annual cost of $31.7 billion and affecting an estimated 2.4-4.5 million people. Several underlying molecular and cellular pathophysiological mechanisms, including poor vascularization, excessive extracellular matrix (ECM) degradation by proteases, decreased growth factor activity, and bacterial infection can lead to chronic wounds. More effective wound therapies need to address one or more of these mechanisms to significantly advance wound care. Recent Advances: Self-assembled nanomaterials may provide new therapeutic options for chronic wound healing applications as those materials generally exhibit excellent biocompatibility and can bear multiple functionalities, such as ECM-mimicking properties, drug delivery capabilities, and tunable mechanics. Furthermore, self-assembled nanomaterials can be produced at low cost, and owing to their ability to self-organize, generate complex multifunctional structures that can be tailored to the varying sizes and shapes of chronic wounds. Self-assembled nanomaterials have been engineered to serve as wound dressings, growth factor delivery systems, and antimicrobials. Critical Issues: As there are many different types of self-assembled nanomaterials, which in turn have different mechanisms of self-assembly and physiochemical properties, one type of self-assembled nanomaterials may not be sufficient to address all underlying mechanisms of chronic wounds. However, self-assembled nanomaterials can be easily tailored, and developing multifunctional self-assembled nanomaterials that can address various targets in chronic wounds will be needed. Future Directions: Future studies should investigate combinations of various self-assembled nanomaterials to take full advantage of their multifunctional properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.