Abstract

AbstractSelf‐assembled monolayers (SAMs) offer the advantage of facile interfacial modification, leading to significant improvements in device performance. In this study, we report the design and synthesis of a new series of carboxylic acid‐functionalized porphyrin derivatives, namely AC‐1, AC‐3, and AC‐5, and present, for the first time, a strategy to exploit the large π‐moiety of porphyrins as a backbone for interfacing the indium tin oxide (ITO) electrode and perovskite active layer in an inverted perovskite solar cell (PSC) configuration. The electron‐rich nature of porphyrins facilitates hole transfer and the formation of SAMs, resulting in a dense surface that minimizes defects. Comprehensive spectroscopic and dynamic studies demonstrate that the double‐anchored AC‐3 and AC‐5 enhance SAMs on ITO, passivate the perovskite layer, and function as conduits to facilitate hole transfer, thus significantly boosting the performance of PSCs. The champion inverted PSC employing AC‐5 SAM achieves an impressive solar efficiency of 23.19 % with a high fill factor of 84.05 %. This work presents a novel molecular engineering strategy for functionalizing SAMs to tune the energy levels, molecular dipoles, packing orientations to achieve stable and efficient solar performance. Importantly, our comprehensive investigation has unraveled the associated mechanisms, offering valuable insights for future advancements in PSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call