Abstract

Platelet-derived extracellular vesicles (PEVs) showing great potential in wound healing have attracted increasing attention recently. Nondestructive isolation and effective utilization strategies are highly conducive for PEVs developing into recognized therapeutic entities. Here, we present an efficient strategy for PEV isolation and bacterial infected wound healing based on self-assembled DNA microflowers. First, DNA microflowers are prepared using rolling circle amplification. Then, the hydrophobic interaction between cholesteryl modified on DNA microflowers and the phospholipid bilayer membrane of PEVs leads to the formation of a network structure with improved mechanical strength and the separation of PEVs from biological samples. Finally, controlled release of PEVs is achieved through bacterial-induced hydrogel degradation. In vitro experiments demonstrate the obtained DNA hydrogel with good cytocompatibility and therapeutic potential. Taken together, the DNA microflower-based hydrogels with bioadhesive, self-healing, tunable mechanical properties and bacteria-responsive behavior offer substantial potential for EV isolation and wound healing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call