Abstract

Metal chelation, characterized by its precise interactions with diverse functional groups, assumes a pivotal role in providing structural stability and generating reactive centers within metalloproteins and metallopeptides. This, in turn, orchestrates the architecture and functionality of various biological processes in living organisms. In our biomimetic approach inspired by the intricacies of natural metallopeptides, we have purposefully designed pyridine‐bis‐tyrosine, a concise Metallopeptide Conjugate (sMPC). Demonstrating the capacity to form complexes with various bioactive metal ions, sMPC emerges as a promising tool for advancing our understanding of metal‐binding proteins and catalyzing the development of cutting‐edge biotechnological materials and technologies. Our investigations underscore the hierarchical self‐assembly of these abridged conjugates into toroidal to vesicle nanostructures, influenced by concentration, and their susceptibility to spatial manipulation through metal ion coordination with functional groups. These biocompatible metal peptide complexes and their resultant nanomaterials present specific potential as exceptional therapeutic agents to address problems associated with metal ion deficiencies, offering a facile and low‐cost alternative to traditional metallodrugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call