Abstract

Self-assembly of nanoparticles (NPs) is a powerful route to constructing higher-order structures. However, the programmed self-assembly of NPs into non-close-packed, 3D, shape-morphing nanocilia arrays remains elusive, whereas dynamically actuated nanometer cilia are universal in living systems. Here, a programmable self-assembly strategy is presented that can direct magnetic NPs into a highly ordered responsive artificial nanocilia actuator with exquisite nanometer 3D structural arrangements. The self-assembled artificial NP cilia can maintain their structural integrity through the interplay of interparticle interactions. Interestingly, the nanocilia can exhibit a field-responsive actuation motion through "rolling and sliding" between assembled NPs rather than bending the entire ciliary beam. It is demonstrated that oleic acid coated over the NPs acts as a lubricating bearing and enables the rolling/sliding-based actuation of the cilia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.