Abstract
Northern Hemisphere summer insolation is regarded as a main control factor of glacial-interglacial cycles. However, internal feedbacks between ice sheets and other climate components are non-negligible. Here we apply a state-of-the-art Earth system model (AWI-ESM) asynchronously coupled to the ice sheet model PISM, focusing on the period when ice sheet grows from an intermediate state (Marine isotope stage 3, around 38 k) to a maximum ice sheet state (the Last Glacial Maximum). Our results show that initial North American ice sheet differences at 38 k are erased by feedbacks between atmospheric circulation and ice sheet geometry that modulate the ice sheet development during this period. Counter-intuitively, moisture transported from the North Atlantic warm pool during summer is the main controlling factor for the ice sheet advance. A self-adaptative mechanism is proposed in the development of a fully-grown NA ice sheet which indicates how the Earth system stabilizes itself via interactions between different Earth System components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.