Abstract
<strong class="journal-contentHeaderColor">Abstract.</strong> The precise environmental mechanisms controlling Quaternary glacial cycles remain ambiguous. To address this problem, it is critical to better comprehend the drivers of spatio-temporal variability in ice-sheet evolution by establishing reliable chronologies of former outlet-glacier advances. When spanning multiple glacial cycles, such chronologies have the capacity to contribute to knowledge on the topic of interhemispheric phasing of glaciations and climate events. In southern Argentina, reconstructions of this kind are achievable, as Quaternary expansions of the Patagonian Ice Sheet have emplaced a well-preserved geomorphological record covering several glacial cycles. Moreover, robust ice-sheet reconstructions from Patagonia are powerful barometers of former climate change, as Patagonian glaciers are influenced by the Southern Westerly Winds and the Antarctic Circumpolar Current coupled to them. It is essential to better constrain former shifts in these circulation mechanisms as they may have played a critical role in pacing regional and possibly global Quaternary climate change. Here, we present a new set of cosmogenic <span class="inline-formula"><sup>10</sup></span>Be and <span class="inline-formula"><sup>26</sup></span>Al exposure ages from pre-Last Glacial Cycle moraine boulder, glaciofluvial outwash cobble, and bedrock samples. This dataset constitutes the first direct chronology dating pre-Last Glacial Maximum (LGM) glacier advances in northern Patagonia and completes our effort to date the entire preserved moraine record of the RÃo Corcovado valley system (43<span class="inline-formula"><sup>â</sup></span>âS, 71<span class="inline-formula"><sup>â</sup></span>âW). We find that the outermost margins of the study site depict at least three distinct pre-Last Glacial Cycle stadials occurring around 290â270, 270â245, and 130â150âka. Combined with the local LGM chronology, we discover that a minimum of four distinct Pleistocene stadials occurred during Marine Isotope Stages 8, 6, and 2 in northern Patagonia. Evidence for Marine Isotope Stage 4 and 3 deposits were not found at the study site. This may illustrate former longitudinal and latitudinal asynchronies in the Patagonian Ice Sheet mass balance during these Marine Isotope Stages. We find that the most extensive middle-to-late Pleistocene expansions of the Patagonian Ice Sheet appear to be out of phase with local summer insolation intensity but synchronous with orbitally controlled periods of longer and colder winters. Our findings thus enable the exploration of the potential roles of seasonality and seasonal duration in driving the southern mid-latitude ice-sheet mass balance, and they facilitate novel glacio-geomorphological interpretations for the study region. They also provide empirical constraints on former ice-sheet extent and dynamics that are essential for calibrating numerical ice-sheet and glacial isostatic adjustment models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.