Abstract

This paper formulates an original hierarchical self-tuning control procedure to enhance the disturbance-rejection capability of under-actuated rotary pendulum systems against exogenous disturbances. The conventional state-feedback controllers generally make a trade-off between the robustness and control effort in a closed-loop system. To combine the aforementioned characteristics into a single framework, this paper contributes to develop and augment the baseline Linear-Quadratic-Regulator (LQR) with a novel “adjustable degree-of-stability design” module. This augmentation dynamically relocates the system's closed-loop poles in the stable (left-half) region of the complex plane by dynamically adjusting a single hyper-parameter that modifies the constituents of LQR's performance index. The hyper-parameter is adaptively modulated online via a pre-calibrated hyperbolic-secant-function that is driven by state-error variables. The performance of the proposed adaptive controller is benchmarked against fixed-gain controllers via credible hardware experiments conducted on the standard QNET Rotary Pendulum setup. The experimental outcomes indicate that the proposed controller significantly enhances the system's robustness against exogenous disturbances and maintains its stability within a broad range of operating conditions, without inducing peak servo requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.