Abstract
In the ship design, there are strict vibration-proof requirements for precision instruments. Therefore, a ship repulsive magnetic levitation damping device is designed to achieve vibration reduction. And one self-tuning predictive control method is proposed to achieve the stable levitation of this device. Firstly, a predictive control (MPC) method with state constraints and input constraints is adopted to realise the stable suspension of the floater. The MPC can solve the problem of position imbalance of the magnetic levitation system under the external complex disturbances. Secondly, a self-tuning MPC method based on recursive least square is proposed to solve the problem caused by the fixed parameters of the traditional predictive controller. At the beginning of each control cycle, the recursive least-squares (RLS) method is used to estimate the parameters of the system. Thus, the optimal control model could be obtained for the current situation. Then, this model is applied to the predictive controller to solve the problem of parameter fixation in the traditional predictive control. Finally, the simulation results show that it can improve the accuracy, dynamic response and anti-interference performance obviously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.