Abstract

AbstractPrognostic and Health Management (PHM) is an emerging maintenance concept that is highly regarded by the scientific community and practitioners, as its adoption can bring economic, technical and environmental benefits to a company. PHM fully reflects the smart maintenance paradigm encompassing data collection, data manipulation, state detection, health assessment, prognostic assessment and advisory generation. Despite the undeniable benefits, there is still a large gap between the scientific and the real world. Several authors have investigated on the barriers to PHM implementation for companies, highlighting among them the lack of systematic approaches to its design and implementation. As a first contribution to this topic, the authors conducted a systematic literature review (SLR) to investigate the use of Decision Support Systems (DSSs) to support the PHM implementation. The SLR highlighted that few DSS had been developed and were limited to critical unit identification, maintenance strategy selection and data acquisition phase of PHM. Therefore, a conceptual framework for PHM implementation was provided as a second contribution. This framework summarises the decisions that should be addressed by a practitioner wishing to implement PHM services; moreover, it could lay the foundations for the development/improvement of the missing/existing DSSs for PHM implementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.