Abstract

A self-terminating rapid electrodeposition process for controlled growth of platinum (Pt) monolayer films from a K(2)PtCl(4)-NaCl electrolyte has been developed that is tantamount to wet atomic layer deposition. Despite the deposition overpotential being in excess of 1 volt, Pt deposition was quenched at potentials just negative of proton reduction by an alteration of the double-layer structure induced by a saturated surface coverage of underpotential deposited H (H(upd)). The surface was reactivated for further Pt deposition by stepping the potential to more positive values, where H(upd) is oxidized and fresh sites for the adsorption of PtCl(4)(2-) become available. Periodic pulsing of the potential enables sequential deposition of two-dimensional Pt layers to fabricate films of desired thickness, relevant to a range of advanced technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call