Abstract

Electrochemical CO2 reduction into energy-carrying compounds, such as formate, is of great importance for carbon neutrality, which however suffers from high electrical energy input and liquid products crossover. Herein, we fabricated self-supported ultrathin NiCo layered double hydroxides (LDHs) electrodes as anode for methanol electrooxidation to achieve a high formate production rate (5.89 mmol h−1 cm−2) coupled with CO2 electro-reduction at the cathode. A total formate faradic efficiency of both anode for methanol oxidation and cathode for CO2 reduction can reach up to 188% driven by a low cell potential of only 2.06 V at 100 mA cm−2 in membrane-electrode assembly (MEA). Physical characterizations demonstrated that Ni3+ species, formed on the electrochemical oxidation of Ni-containing hydroxide, acted as catalytically active species for the oxidation of methanol to formate. Furthermore, DFT calculations revealed that ultrathin LDHs were beneficial for the formation of Ni3+ in hydroxides and introducing oxygen vacancy in NiCo-LDH could decrease the energy barrier of the rate-determining step for methanol oxidation. This work presents a promising approach for fabricating advanced electrodes towards electrocatalytic reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call