Abstract

Developing the high activity, low cost and robust large-current-density-based electrocatalysts is of great significance for the industrial electrolytic water splitting. However, the current range of most reported materials is small, which makes it difficult for them to play their roles in practical applications. Here, a self-supported amorphous FexNi1-xMoO4/IF treated with ammonium fluoride (AF0.1-FNMO/IF) is synthesized by one-step hydrothermal method. With the help of NH4F, AF0.1-FNMO/IF exhibits a vertically cross-linked nanosheet with spherical structure. Electrochemical measurement shows that AF0.1-FNMO/IF affords a large current density ordeal and only need low overpotentials of 289 and 345 mV to reach a current response of 500 mA/cm2 for oxygen evolution reaction and hydrogen evolution reaction, respectively, together with long-time stability (both at 500, 1000 and 2000 mA/cm2) in 1.0 mol/L KOH solution. Using it as bifunctional catalyst for overall water splitting, the current densities of 100, 500, 1000 and 1500 mA/cm2 are achieved at a cell voltage of 1.71, 1.88, 1.94 and 1.97 V with excellent durability, which is much better than that of most published electrodes. The work provides valuable insight for designing higher activity nickel iron-based molybdate catalysts with large current density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.