Abstract

We consider the problem of denoising low-dose xray projections for cone-beam CT, where x-ray measurements are typically modeled as signal corrupted by Poisson noise. Since each projection view is a 2D image, we regard the lowdose projection views as examples to train a convolutional neural network. For self-supervised training without ground truth, we partially blind noisy projections and train the denoising model to recover the blind spots of projection views. From the projection views denoised by the learned model, we can reconstruct a high-quality 3D volume with a reconstruction algorithm such as the standard filtered backprojection. Through a series of phantom experiments, our self-supervised denoising approach simultaneously reduces noise level and restores structural information in cone-beam CT images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.