Abstract

Due to the scarcity and high cost of labeled hyperspectral image (HSI) samples, many deep learning methods driven by massive data cannot achieve the intended expectations. Semi-supervised and self-supervised algorithms have advantages in coping with this phenomenon. This paper primarily concentrates on applying self-supervised strategies to make strides in semi-supervised HSI classification. Notably, we design an effective and a unified self-supervised assisted semi-supervised residual network (SSRNet) framework for HSI classification. The SSRNet contains two branches, i.e., a semi-supervised and a self-supervised branch. The semi-supervised branch improves performance by introducing HSI data perturbation via a spectral feature shift. The self-supervised branch characterizes two auxiliary tasks, including masked bands reconstruction and spectral order forecast, to memorize the discriminative features of HSI. SSRNet can better explore unlabeled HSI samples and improve classification performance. Extensive experiments on four benchmarks datasets, including Indian Pines, Pavia University, Salinas, and Houston2013, yield an average overall classification accuracy of 81.65%, 89.38%, 93.47% and 83.93%, which sufficiently demonstrate that SSRNet can exceed expectations compared to state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.