Abstract
Hyperspectral Images (HSI) classification is a challenging task due to a large number of spatial-spectral bands of images with high inter-similarity, extra variability classes, and complex region relationships, including overlapping and nested regions. Classification becomes a complex problem in remote sensing images like HSIs. Convolutional Neural Networks (CNNs) have gained popularity in addressing this challenge by focusing on HSI data classification. However, the performance of 2D-CNN methods heavily relies on spatial information, while 3D-CNN methods offer an alternative approach by considering both spectral and spatial information. Nonetheless, the computational complexity of 3D-CNN methods increases significantly due to the large capacity size and spectral dimensions. These methods also face difficulties in manipulating information from local intrinsic detailed patterns of feature maps and low-rank frequency feature tuning. To overcome these challenges and improve HSI classification performance, we propose an innovative approach called the Attention 3D Central Difference Convolutional Dense Network (3D-CDC Attention DenseNet). Our 3D-CDC method leverages the manipulation of local intrinsic detailed patterns in the spatial-spectral features maps, utilizing pixel-wise concatenation and spatial attention mechanism within a dense strategy to incorporate low-rank frequency features and guide the feature tuning. Experimental results on benchmark datasets such as Pavia University, Houston 2018, and Indian Pines demonstrate the superiority of our method compared to other HSI classification methods, including state-of-the-art techniques. The proposed method achieved 97.93% overall accuracy on the Houston-2018, 99.89% on Pavia University, and 99.38% on the Indian Pines dataset with the 25 × 25 window size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.