Abstract

A numerical method is presented for initial self-stress design of tensegrity grid structures with exostresses, which is defined as a linear combination of the coefficients of independent self-stress modes. A discussion on proper division of the number of member groups for the purpose of existence of a single integral feasible self-stress mode has been explicitly given. Dummy elements to transform the tensegrity grid structure with statically indeterminate supports into self-stressed pin-jointed system without supports are employed. The unilateral properties of the stresses in cables and struts are taken into account. Evaluation of the stability for the structure is also considered. Several numerical examples are presented to demonstrate the efficiency and robustness in searching initial single integral feasible self-stress mode for tensegrity grid structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.