Abstract

Abstract In this paper, we investigate closed strictly convex hypersurfaces in ℝ n + 1 {\mathbb{R}^{n+1}} which shrink self-similarly under a large family of fully nonlinear curvature flows by high powers of curvature. When the speed function is given by powers of a homogeneous of degree 1 and inverse concave function of the principal curvatures with power greater than 1, we prove that the only such hypersurfaces are round spheres. We also prove that slices are the only closed strictly convex self-similar solutions to such curvature flows in the hemisphere 𝕊 + n + 1 {\mathbb{S}^{n+1}_{+}} with power greater than or equal to 1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.