Abstract

In this paper, we study self-expanding solutions to a large class of parabolic inverse curvature flows by homogeneous symmetric functions of principal curvatures in Euclidean spaces. These flows include the inverse mean curvature flow and many nonlinear flows in the literature. We first show that the only compact self-expanders to any of these flows are round spheres. Secondly, we show that complete non-compact self-expanders to any of these flows with asymptotically cylindrical ends must be rotationally symmetric. Thirdly, we show that when such a flow is uniformly parabolic, there exist complete rotationally symmetric self-expanders which are asymptotic to two round cylinders with different radii. These extend some earlier results of inverse mean curvature flow to a wider class of flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.