Abstract

We report a family of self-similar exact solutions in General Relativity. The solutions are found in a Painleve-Gullstrand coordinate system but can also be transformed smoothly into a diagonal form. The solutions represent a gravitational collapse leading to three possible outcomes, depending on the parameter space: (i) a collapse followed by a bounce and dispersal of the clustered matter distribution, (ii) a rapid collapse followed by a bounce and an eventual re-collapse, and (iii) a standard collapse leading to zero proper volume. Profiles of the energy conditions are studied for all of the scenarios, and it is noted that a bounce is usually associated with a violation of the Null Energy Condition. It is found that more than one null surfaces (apparent horizons) can develop during the collapse. We also discuss that for a general metric tensor having a conformal symmetry, some regions of the parameter space allows a formation of null throat, much like a wormhole. Matching the metric with a Schwarzschild metric in Painleve–Gullstrand form leads to the geodesic equation for a zero energy falling particle in the exterior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.